Q.PEAK DUO L-G5.2
380-400
AWARD-WINNING
HIGH PERFORMANCE

LOW ELECTRICITY GENERATION COSTS
Higher yield per surface area, lower BOS costs, higher power classes, and an efficiency rate of up to 20.1%.

INNOVATIVE ALL-WEATHER TECHNOLOGY
Optimal yields, whatever the weather with excellent low-light and temperature behaviour.

ENDURING HIGH PERFORMANCE
Long-term yield security with Anti LID Technology, Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.

EXTREME WEATHER RATING
High-tech aluminum alloy frame, tested to the extreme in Australia for Australian Conditions at James Cook University Cyclone Testing Station.

A RELIABLE INVESTMENT
Inclusive 12-year product warranty and 25-year linear performance warranty².

STATE OF THE ART MODULE TECHNOLOGY
Q.ANTUM DUO combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology.

¹ APT test conditions according to IEC/TS 62804-1:2015, method B (−1500 V, 168 h)
² See data sheet on rear for further information.

THE IDEAL SOLUTION FOR:
- Rooftop arrays on commercial/industrial buildings
- Ground-mounted solar power plants

Engineered in Germany
MECHANICAL SPECIFICATION

- **Format**: 2015mm × 1000mm × 35mm (including frame)
- **Weight**: 23.5kg
- **Front Cover**: 3.2mm thermally pre-stressed glass with anti-reflection technology
- **Back Cover**: Composite film
- **Frame**: Anodised aluminium
- **Cell**: 6 × 24 monocrystalline Q.ANTUM solar cells
- **Junction box**: 70-85mm × 50-70mm × 13-21mm Protection class IP67, with bypass diodes
- **Cable**: 4mm² Solar cable; (+) ≥ 1350 mm, (−) ≥ 1350 mm
- **Connector**: Stäubli MC4-Evo2, IP67

ELECTRICAL CHARACTERISTICS

POWER CLASS

<table>
<thead>
<tr>
<th>Minimum</th>
<th>380</th>
<th>385</th>
<th>390</th>
<th>395</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power at MPP</td>
<td>284.4</td>
<td>288.2</td>
<td>291.9</td>
<td>295.6</td>
<td>299.4</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>10.05</td>
<td>10.10</td>
<td>10.14</td>
<td>10.19</td>
<td>10.24</td>
</tr>
<tr>
<td>Open Circuit Voltage</td>
<td>47.95</td>
<td>48.21</td>
<td>48.48</td>
<td>48.74</td>
<td>49.00</td>
</tr>
<tr>
<td>Current at MPP</td>
<td>9.57</td>
<td>9.61</td>
<td>9.66</td>
<td>9.70</td>
<td>9.75</td>
</tr>
<tr>
<td>Voltage at MPP</td>
<td>39.71</td>
<td>40.05</td>
<td>40.38</td>
<td>40.71</td>
<td>41.04</td>
</tr>
<tr>
<td>Efficiency</td>
<td>≥ 18.9</td>
<td>≥ 19.1</td>
<td>≥ 19.4</td>
<td>≥ 19.6</td>
<td>≥ 19.9</td>
</tr>
</tbody>
</table>

MINIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC (POWER TOLERANCE +5W / −0W)

<table>
<thead>
<tr>
<th>Minimum</th>
<th>380</th>
<th>385</th>
<th>390</th>
<th>395</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power at MPP</td>
<td>284.4</td>
<td>288.2</td>
<td>291.9</td>
<td>295.6</td>
<td>299.4</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>10.05</td>
<td>10.10</td>
<td>10.14</td>
<td>10.19</td>
<td>10.24</td>
</tr>
<tr>
<td>Open Circuit Voltage</td>
<td>47.95</td>
<td>48.21</td>
<td>48.48</td>
<td>48.74</td>
<td>49.00</td>
</tr>
<tr>
<td>Current at MPP</td>
<td>9.57</td>
<td>9.61</td>
<td>9.66</td>
<td>9.70</td>
<td>9.75</td>
</tr>
<tr>
<td>Voltage at MPP</td>
<td>39.71</td>
<td>40.05</td>
<td>40.38</td>
<td>40.71</td>
<td>41.04</td>
</tr>
<tr>
<td>Efficiency</td>
<td>≥ 18.9</td>
<td>≥ 19.1</td>
<td>≥ 19.4</td>
<td>≥ 19.6</td>
<td>≥ 19.9</td>
</tr>
</tbody>
</table>

MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT

<table>
<thead>
<tr>
<th>Minimum</th>
<th>380</th>
<th>385</th>
<th>390</th>
<th>395</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power at MPP</td>
<td>284.4</td>
<td>288.2</td>
<td>291.9</td>
<td>295.6</td>
<td>299.4</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>10.05</td>
<td>10.10</td>
<td>10.14</td>
<td>10.19</td>
<td>10.24</td>
</tr>
<tr>
<td>Open Circuit Voltage</td>
<td>47.95</td>
<td>48.21</td>
<td>48.48</td>
<td>48.74</td>
<td>49.00</td>
</tr>
<tr>
<td>Current at MPP</td>
<td>9.57</td>
<td>9.61</td>
<td>9.66</td>
<td>9.70</td>
<td>9.75</td>
</tr>
<tr>
<td>Voltage at MPP</td>
<td>39.71</td>
<td>40.05</td>
<td>40.38</td>
<td>40.71</td>
<td>41.04</td>
</tr>
<tr>
<td>Efficiency</td>
<td>≥ 18.9</td>
<td>≥ 19.1</td>
<td>≥ 19.4</td>
<td>≥ 19.6</td>
<td>≥ 19.9</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENTS

- Temperature Coefficient of I_{sc}: $+0.04 \% / K$
- Temperature Coefficient of V_{oc}: $-0.27 \% / K$
- Temperature Coefficient of P_{mp}: $-0.36 \% / K$

PERFORMANCE AT LOW IRRADIANCE

- At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 25 years. At least 85% of nominal power up to 15 years. All data within measurement tolerances.
- Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PROPERTIES FOR SYSTEM DESIGN

- **Maximum System Voltage**: 1500 (IEC)/1500 (UL)
- **Maximum Reverse Current**: 20 A
- **Max. Design Load, Push / Pull**: 3600/1600 W
- **Max. Test Load, Push / Pull**: 5400/2400 W
- **Fire Rating**: C / TYPE 1
- **Permitted Module Temperature on Continuous Duty**: -40°C - +85°C

QUALIFICATIONS AND CERTIFICATES

- **IEC 61215:2016, IEC 61730:2016, Application Class II**: This data sheet complies with DIN EN 50360.
- **Number of Modules per Pallet**: 29
- **Number of Pallets per Trailer (24t)**: 24
- **Number of Pallets per 40’ HC-Container (26 t)**: 22
- **Pallet Dimensions (L × W × H)**: 2080 × 1150 × 1190 mm
- **Pallet Weight**: 742kg

PACKAGING INFORMATION

- **Made in Korea**

Hanwha Q CELLS Australia Pty Ltd
Suite 1, Level 1, 15 Blue Street, Sydney, NSW 2060, Australia | **TEL**: +61 (0)2 9016 3033 | **FAX**: +61 (0)2 9016 3032 | **EMAIL**: q-cells-australia@q-cells.com | **WEB**: www.q-cells.com/au